Abstract
This study presents a new approach for Urban Functional Zone (UFZ) mapping by integrating two-dimensional (2D) Urban Structure Parameters (USPs), three-dimensional (3D) USPs, and the spatial patterns of land covers, which can be divided into two steps. Firstly, we extracted various features, i.e., spectral, textural, geometrical features, and 3D USPs from very-high-resolution (VHR) images and light detection and ranging (LiDAR) point clouds. In addition, the multi-classifiers (MLCs), i.e., Random Forest, K-Nearest Neighbor, and Linear Discriminant Analysis classifiers were used to perform the land cover mapping by using the optimized features. Secondly, based on the land cover classification results, we extracted 2D and 3D USPs for different land covers and used MLCs to classify UFZs. Results for the northern part of Brooklyn, New York, USA, show that the approach yielded an excellent accuracy of UFZ mapping with an overall accuracy of 91.9%. Moreover, we have demonstrated that 3D USPs could considerably improve the classification accuracies of UFZs and land covers by 6.4% and 3.0%, respectively.
Funder
Beijing University of Civil Engineering and Architecture
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献