Urban Functional Zone Classification Using Light-Detection-and-Ranging Point Clouds, Aerial Images, and Point-of-Interest Data

Author:

Mo You123,Guo Zhaocheng123,Zhong Ruofei4ORCID,Song Wen5ORCID,Cao Shisong5ORCID

Affiliation:

1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China

2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources of the People’s Republic of China, Beijing 100083, China

3. Technology Innovation Center for Geohazards Identification and Monitoring with Earth Observation System, Ministry of Natural Resources of the People’s Republic of China, Beijing 100083, China

4. Key Laboratory of 3D Information Acquisition and Application, Ministry of Education of the People’s Republic of China, Capital Normal University, Beijing 100048, China

5. School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

Urban Functional Zones (UFZs) serve as the fundamental units of cities, making the classification and recognition of UFZs of paramount importance for urban planning and development. These differences between UFZs not only encompass geographical landscape disparities but also incorporate socio-economic information. Therefore, it is essential to extract high-precision two-dimensional (2D) and three-dimensional (3D) Urban Morphological Parameters (UMPs) and integrate socio-economic data for UFZ classification. In this study, we conducted UFZ classification using airborne LiDAR point clouds, aerial images, and point-of-interest (POI) data. Initially, we fused LiDAR and image data to obtain high-precision land cover distributions, building height models, and canopy height models, which served as accurate data sources for extracting 2D and 3D UMPs. Subsequently, we segmented city blocks based on road network data and extracted 2D UMPs, 3D UMPs, and POI Kernel Density Features (KDFs) for each city block. We designed six classification experiments based on features from single and multiple data sources. K-Nearest Neighbors (KNNs), random forest (RF), and eXtreme Gradient Boosting (XGBoost) were employed to classify UFZs. Furthermore, to address the potential data redundancy stemming from numerous input features, we implemented a feature optimization experiment. The results indicate that the experiment, which combined POI KDFs and 2D and 3D UMPs, achieved the highest classification accuracy. Three classifiers consistently exhibited superior performance, manifesting a substantial improvement in the best Overall Accuracy (OA) that ranged between 8.31% and 17.1% when compared to experiments that relied on single data sources. Among these, XGBoost outperformed the others with an OA of 84.56% and a kappa coefficient of 0.82. By conducting feature optimization on all 107 input features, the classification accuracy of all three classifiers exceeded 80%. Specifically, the OA for KNN improved by 10.46%. XGBoost maintained its leading performance, achieving an OA of 86.22% and a kappa coefficient of 0.84. An analysis of the variable importance proportion of 24 optimized features revealed the following order: 2D UMPs (46.46%) > 3D UMPs (32.51%) > POI KDFs (21.04%). This suggests that 2D UMPs contributed the most to classification, while a ranking of feature importance positions 3D UMPs in the lead, followed by 2D UMPs and POI KDFs. This highlights the critical role of 3D UMPs in classification, but it also emphasizes that the socio-economic information reflected by POI KDFs was essential for UFZ classification. Our research outcomes provide valuable insights for the rational planning and development of various UFZs in medium-sized cities, contributing to the overall functionality and quality of life for residents.

Funder

Geological Survey Project of China Geological Survey (Comprehensive Remote Sensing Identification for Geohazards

Key Laboratory of Airborne Geophysics and Remote Sensing Geology of the Ministry of Natural Resources

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3