Modeling of Environmental Impacts on Aerial Hyperspectral Images for Corn Plant Phenotyping

Author:

Ma Dongdong,Rehman Tanzeel U.,Zhang Libo,Maki Hideki,Tuinstra Mitchell R.ORCID,Jin Jian

Abstract

Aerial imaging technologies have been widely applied in agricultural plant remote sensing. However, an as yet unexplored challenge with field imaging is that the environmental conditions, such as sun angle, cloud coverage, temperature, and so on, can significantly alter plant appearance and thus affect the imaging sensor’s accuracy toward extracting plant feature measurements. These image alterations result from the complicated interaction between the real-time environments and plants. Analysis of these impacts requires continuous monitoring of the changes through various environmental conditions, which has been difficult with current aerial remote sensing systems. This paper aimed to propose a modeling method to comprehensively understand and model the environmental influences on hyperspectral imaging data. In 2019, a fixed hyperspectral imaging gantry was constructed in Purdue University’s research farm, and over 8000 repetitive images of the same corn field were taken with a 2.5 min interval for 31 days. Time-tagged local environment data, including solar zenith angle, solar irradiation, temperature, wind speed, and so on, were also recorded during the imaging time. The images were processed for phenotyping data, and the time series decomposition method was applied to extract the phenotyping data variation caused by the changing environments. An artificial neural network (ANN) was then built to model the relationship between the phenotyping data variation and environmental changes. The ANN model was able to accurately predict the environmental effects in remote sensing results, and thus could be used to effectively eliminate the environment-induced variation in the phenotyping features. The test of the normalized difference vegetation index (NDVI) calculated from the hyperspectral images showed that variance in NDVI was reduced by 79%. A similar performance was confirmed with the relative water content (RWC) predictions. Therefore, this modeling method shows great potential for application in aerial remote sensing applications in agriculture, to significantly improve the imaging quality by effectively eliminating the effects from the changing environmental conditions.

Funder

Sumitomo Chemical

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3