Visible and Near-Infrared Hyperspectral Diurnal Variation Calibration for Corn Phenotyping Using Remote Sensing

Author:

Zhang Jinnuo1ORCID,Ma Dongdong1ORCID,Wei Xing1ORCID,Jin Jian1

Affiliation:

1. Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

Remote sensing coupled with hyperspectral technology has become increasingly popular to investigate plant traits, showcasing its advantages in studying plant growth, health, and productivity. The quality of the collected hyperspectral images is crucial for subsequent data analysis and plant phenotyping studies. However, diurnal variations in spectral characteristics introduce more data variance in canopy reflectance spectra, raising the cost of subsequent analyses and compromising the performance of trait estimation models. In this study, a fixed gantry platform in a cornfield was used to capture visible and near-infrared (VNIR) hyperspectral images of corn canopies at consecutive time intervals. By applying reference board calibration and locally weighted scatterplot smoothing to minimize the effects of ambient light and daily growth, diurnal spectral changes across all involved VNIR wavelengths were investigated. Several distinct diurnal patterns were observed to have close connections with the plants’ physiological effects. Diurnal calibration models were established at every wavelength by employing the least squares polynomial algorithm, with the highest coefficient of determination reaching 0.84. Moreover, by employing diurnal calibration in canopy spectra processing, the reduction in spectral variance brought about by varying imaging time was evidently exhibited. This study not only reveals the diurnal spectral variation pattern at VNIR bands but also offers a reliable, straightforward, and low-cost approach to improve the quality of remote sensing data and reduce the inherent variance brought about via the different imaging times ensuring that comparable spectral analysis can be performed under relatively fair conditions.

Funder

Purdue University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3