SAFFNet: Self-Attention-Based Feature Fusion Network for Remote Sensing Few-Shot Scene Classification

Author:

Kim Joseph,Chi MingminORCID

Abstract

In real applications, it is necessary to classify new unseen classes that cannot be acquired in training datasets. To solve this problem, few-shot learning methods are usually adopted to recognize new categories with only a few (out-of-bag) labeled samples together with the known classes available in the (large-scale) training dataset. Unlike common scene classification images obtained by CCD (Charge-Coupled Device) cameras, remote sensing scene classification datasets tend to have plentiful texture features rather than shape features. Therefore, it is important to extract more valuable texture semantic features from a limited number of labeled input images. In this paper, a multi-scale feature fusion network for few-shot remote sensing scene classification is proposed by integrating a novel self-attention feature selection module, denoted as SAFFNet. Unlike a pyramidal feature hierarchy for object detection, the informative representations of the images with different receptive fields are automatically selected and re-weighted for feature fusion after refining network and global pooling operation for a few-shot remote sensing classification task. Here, the feature weighting value can be fine-tuned by the support set in the few-shot learning task. The proposed model is evaluated on three publicly available datasets for few shot remote sensing scene classification. Experimental results demonstrate the effectiveness of the proposed SAFFNet to improve the few-shot classification accuracy significantly compared to other few-shot methods and the typical multi-scale feature fusion network.

Funder

Science and technology research project of Sinopec

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3