Unlocking the capabilities of explainable few-shot learning in remote sensing

Author:

Lee Gao Yu,Dam Tanmoy,Ferdaus Md. Meftahul,Poenar Daniel Puiu,Duong Vu N.

Abstract

AbstractRecent advancements have significantly improved the efficiency and effectiveness of deep learning methods for image-based remote sensing tasks. However, the requirement for large amounts of labeled data can limit the applicability of deep neural networks to existing remote sensing datasets. To overcome this challenge, few-shot learning has emerged as a valuable approach for enabling learning with limited data. While previous research has evaluated the effectiveness of few-shot learning methods on satellite-based datasets, little attention has been paid to exploring the applications of these methods to datasets obtained from Unmanned Aerial Vehicles (UAVs), which are increasingly used in remote sensing studies. In this review, we provide an up-to-date overview of both existing and newly proposed few-shot classification techniques, along with appropriate datasets that are used for both satellite-based and UAV-based data. We demonstrate few-shot learning can effectively handle the diverse perspectives in remote sensing data. As an example application, we evaluate state-of-the-art approaches on a UAV disaster scene dataset, yielding promising results. Furthermore, we highlight the significance of incorporating explainable AI (XAI) techniques into few-shot models. In remote sensing, where decisions based on model predictions can have significant consequences, such as in natural disaster response or environmental monitoring, the transparency provided by XAI is crucial. Techniques like attention maps and prototype analysis can help clarify the decision-making processes of these complex models, enhancing their reliability. We identify key challenges including developing flexible few-shot methods to handle diverse remote sensing data effectively. This review aims to equip researchers with an improved understanding of few-shot learning’s capabilities and limitations in remote sensing, while pointing out open issues to guide progress in efficient, reliable and interpretable data-efficient techniques.

Funder

ATM Leaders Track-CAAS Scholarship

CAAS-ATMRI collaboration

Publisher

Springer Science and Business Media LLC

Reference166 articles.

1. Agarwal A, Beygelzimer A, Dudík M, Langford J, Wallach H (2018) A reductions approach to fair classification. In: International Conference on Machine Learning, pp 60–69. PMLR

2. Aleissaee AA, Kumar A, Anwer RM, Khan S, Cholakkal H, Xia G-S et al (2022) Transformers in remote sensing: a survey. arXiv:2209.01206

3. Al-Haddad LA, Jaber AA (2023) An intelligent fault diagnosis approach for multirotor uavs based on deep neural network of multi-resolution transform features. Drones 7(2):82

4. Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, García S, Gil-López S, Molina D, Benjamins R et al (2020) Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Information fusion 58:82–115

5. Bai J, Huang S, Xiao Z, Li X, Zhu Y, Regan AC, Jiao L (2022) Few-shot hyperspectral image classification based on adaptive subspaces and feature transformation. IEEE Trans Geosci Remote Sens 60:1–17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3