Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources

Author:

De Robbio RobertaORCID

Abstract

To become sustainable, the production of electricity has been oriented towards the adoption of local and renewable sources. Distributed electric and thermal energy generation is more suitable to avoid any possible waste, and the Micro Gas Turbine (MGT) can play a key role in this scenario. Due to the intrinsic properties and the high flexibility of operation of this energy conversion system, the exploitation of alternative fuels and the integration of the MGT itself with other energy conversion systems (solar field, ORC, fuel cells) represent one of the most effective strategies to achieve higher conversion efficiencies and to reduce emissions from power systems. The present work aims to review the results obtained by the researchers in the last years. The different technologies are analyzed in detail, both separately and under a more complete view, considering two or more solutions embedded in micro-grid configurations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference153 articles.

1. European Commission (2022, September 02). Latest EU Policy Actions on Climate Change, Available online: https://www.consilium.europa.eu/it/policies/climate-change/eu-climate-action/.

2. European Commission (2022, September 02). Recovery Plan for Europe, Available online: https://ec.europa.eu/info/strategy/recovery-plan-europe_en.

3. Experimental and numerical study on self-sustaining performance of a 30-kW micro gas turbine generator system during startup process;Guan;Energy,2021

4. Design, simulation, and validation of additively manufactured high-temperature combustion chambers for micro gas turbines;Adamou;Energy Convers. Manag.,2021

5. Reale, F., and Sannino, R. (2022). Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review. Energies, 15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3