Design and Thermo-Economic Analysis of an Integrated Solar Field Micro Gas Turbine Biomass Gasifier and Organic Rankine Cycle System

Author:

De Robbio Roberta1ORCID,Cameretti Maria Cristina1,Agizza Salvatore1

Affiliation:

1. Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy

Abstract

A micro gas turbine (MGT) is an advanced technology with a simple structure and fast load response. It represents a good choice for the next generation of distributed power systems, where fossil fuels are going to be largely replaced by biofuels and renewable sources. In this context, this work aims to investigate and compare the performance of gradually more complex energy systems integrating a micro gas turbine plant: simple cogenerating asset, integrating a solar field, presence of a gasifier, and the addition of a bottoming ORC. In all cases, a thermo-economic analysis has been carried out for an application in the agricultural sector. Agricultural waste can be used to create a syngas as fuel for MGT through a gasifier, promoting the utilization of carbon-neutral alternative fuels to reduce harmful emissions. The authors considered the electrical and thermal needs of a hypothetical agri-food company to build the electrical and thermal load curves. The new and more complex cogeneration plant, designed by using the Thermoflex 30 software, leads to an increase in electrical power, recovered thermal power, overall electrical efficiency, carbon neutrality, and cogeneration indexes. In particular, the presence of the solar field promotes a reduction in fuel consumption as well as greater heat input to the thermal unit. The addition of a bottoming ORC system increases the electrical power by 36.4%, without significantly penalizing the thermal unit. Moreover, thanks to the gasifier that offsets the fuel reduction costs, through an economic analysis of the entire plant, a payback time of the investment of less than 4 years is obtained.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference48 articles.

1. (2023, January 22). Available online: https://www.noaa.gov/.

2. Hewicker, C., Hogan, M., and Mogren, A. (2023, January 22). Power Perspective 2030. Available online: http://www.roadmap2050.eu/attachments/files/PowerPerspectives2030_FullReport.pdf.

3. Recuperator considerations for future higher efficiency microturbines;McDonald;Appl. Therm. Eng.,2013

4. Various thermoeconomic assessments of a heat and power system with a micro gas turbine engine used for industry;Balli;Energy Convers. Manag.,2022

5. Thermo-Economic Analysis of a Hybrid Solar Micro Gas Turbine Power Plant;Cameretti;Energy Procedia,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3