Analysis and Evaluation of Methods Used in Measuring the Intensity of Bicycle Traffic

Author:

Kędziorek Piotr,Kasprzyk ZbigniewORCID,Rychlicki Mariusz,Rosiński AdamORCID

Abstract

The work presents the methods of collecting and processing data with the use of devices used in individual measurement methods. Based on the collected video materials, the number of vehicles was determined, which at both measuring points actually exceeded each of the tested cross-sections of the bicycle path. More precise determination of the means of transport was divided into three categories: bicycles, electric scooters, and PT (personal transporters). The data collected with the use of each of the devices was properly processed and aggregated into a form that allows for their mutual comparison (they can be used to manage the energy of electric vehicles). Their greatest advantages and disadvantages were indicated, and external factors that had an impact on the size of the measurement error were identified. The cost of carrying out the traffic volume survey was also assessed, broken down into the measurement methods used. The purpose of this paper is to analyse and evaluate the methods used to measure bicycle traffic volume. Four different measurement methods were used to perform the practical part, which included such devices as a video recorder, microwave radar, perpendicular radar, and a meter connected to an induction loop embedded in the asphalt. The results made it possible to select a rational method for measuring the volume of bicycle traffic. The measurements carried out allow optimization of bicycle routes, especially for electric bicycles. The results indicate the method of physical counting of vehicles from video footage, thanks to which it is possible to achieve a level of measurement accuracy equal to 100%.

Funder

Military University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3