The Influence of Varying Atmospheric and Space Weather Conditions on the Accuracy of Position Determination

Author:

Nowakowski Maciej1ORCID,Dudek Ewa2,Rosiński Adam3ORCID

Affiliation:

1. Demant Technology Centre Sp. z o.o., Al. Jana Pawła II 22, 00-133 Warsaw, Poland

2. Faculty of Transport, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland

3. Division of Electronic Systems Exploitations, Institute of Electronic Systems, Faculty of Electronics, Military University of Technology, 2 Gen. S. Kaliski St., 00-908 Warsaw, Poland

Abstract

Today’s technological developments make it possible to use machines to perform specific tasks instead of humans. However, the challenge for such autonomous devices is to precisely move and navigate in constantly changing external environments. In this paper, the influence of varying weather conditions (air temperature, humidity, wind speed, atmospheric pressure, type of satellite systems used/satellites visible, and solar activity) on the accuracy of position determination was analyzed. To reach the receiver, a satellite signal must travel a great distance and pass through all layers of the Earth’s atmosphere, the variability of which causes errors and delays. Moreover, the weather conditions for receiving data from satellites are not always favorable. In order to investigate the impact of delays and errors on position determination, the measurements of the satellite signal were conducted, the motion trajectories were determined, and the standard deviations of these trajectories were compared. The results obtained show that it is possible to achieve high precision in determining the position, but varying conditions, such as solar flares or satellites’ visibility, meant that not all measurements are able to achieve the required accuracy. The use of the absolute method of satellite signal measurements contributed to this to a large extent. To increase the accuracy of positioning by GNSS systems, it is first of all proposed to use a dual-frequency receiver that eliminates ionospheric refractions.

Funder

Centre for Priority Research Area Artificial Intelligence and Robotics of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3