DeeplabV3+-based navigation line extraction for the sunlight robust combine harvester

Author:

Cheng Gong1ORCID,Jin Chengqian1,Chen Man1ORCID

Affiliation:

1. Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing, China

Abstract

Visual navigation is widely used in intelligent combine harvesters, but the existing algorithms do not have sufficiently high accuracy of the visual navigation line recognition under different sunlight conditions. To address this problem, this article proposes a sunlight-robust DeepLabV3+-based navigation line extraction method for combine harvesters. The navigation lines are extracted by constructing a new dataset and predicting the boundaries of the areas that have been and have not been cut. To address the problem that DeeplabV3+ is not sufficient light in the DCNN part, improvement is proposed by incorporating the MobileNetV2 module. In image segmentation, the prediction time is 22.5 ms, and the mean intersection over union ( FMIOU) is 0.79. After image segmentation, the navigation lines are drawn using the line segment detection algorithm for the harvester. The proposed method is compared with other mainstream networks, and the prediction results are compared using the line segment detection method. The results show that this method can more quickly identify the navigation lines under different conditions of sunlight with less labeled data than the improved U-Net and DeeplabV3+, which uses Xception as the backbone. Compared to the traditional method and the improved U-Net, this method achieves good results and improves the recognition speed by 27 and 9 ms, respectively.

Funder

National key research and development plan project

National Natural Science Foundation of China

General Project of Jiangsu Natural Science Foundation

Jiangsu Agriculture Science and Technology Innovation Fund

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3