Study on Femtosecond Laser Processing Characteristics of Nano-Crystalline CVD Diamond Coating

Author:

Wei Chao,Ma Yuping,Han Yuan,Zhang Yao,Yang Liu,Chen Xuehui

Abstract

Ultra-short pulse laser interaction with diamond materials has attracted extensive interest in micro- and nano-machining, especially for the fabrication of micro tools, because of the straightforward method and high precision. Thanks to the development of chemical vapor deposition (CVD) technology, high-quality CVD diamonds are employed in more varieties of tools as performance-enhancing coatings. The purpose of the experiments reported here was to explore the machinability of CVD diamond coating under the irradiation of femtosecond (fs) pulsed laser. The factor-control approach was adopted to investigate the influence of scanning speed, single pulse energy and repetition rate on the surface quality and carbon phase transition of CVD diamond coating. The material removal rate and surface roughness were evaluated. The interaction mechanism of scanning speed, single pulse energy, and repetition rate were discussed, and the fs laser ablation threshold of CVD diamond coating was calculated. It was demonstrated that two ablation mechanisms (weak and intensive) were in existence as evidenced by the distinct surface morphologies induced under different processing conditions. A strong dependence on the variation of scanning speed and pulse energy is identified in the examination of surface roughness and removal rate. Lorentzian–Gaussian deconvolution of Raman spectra illustrates that fs laser irradiation yields a strong modification effect on the coating and release the compressive stress in it. Furthermore, a newly defined parameter referring to the fs laser energies applied to unit volume was introduced to depict the degree of ablation and the Taguchi method was used to figure out the significance of different parameters. The ablation threshold of CVD diamond coating at the effective pulses of 90 is calculated to be 0.138 J/cm2.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3