Improvement of On-Site Sensor for Simultaneous Determination of Phosphate, Silicic Acid, Nitrate plus Nitrite in Seawater

Author:

Altahan Mahmoud FatehyORCID,Esposito MarioORCID,Achterberg Eric P.ORCID

Abstract

Accurate, on-site determinations of macronutrients (phosphate (PO43−), nitrate (NO3−), and silicic acid (H4SiO4)) in seawater in real time are essential to obtain information on their distribution, flux, and role in marine biogeochemical cycles. The development of robust sensors for long-term on-site analysis of macronutrients in seawater is a great challenge. Here, we present improvements of a commercial automated sensor for nutrients (including PO43−, H4SiO4, and NO2− plus NO3−), suitable for a variety of aquatic environments. The sensor uses the phosphomolybdate blue method for PO43−, the silicomolybdate blue method for H4SiO4 and the Griess reagent method for NO2−, modified with vanadium chloride as reducing agent for the determination of NO3−. Here, we report the optimization of analytical conditions, including reaction time for PO43− analysis, complexation time for H4SiO4 analysis, and analyte to reagent ratio for NO3− analysis. The instrument showed wide linear ranges, from 0.2 to 100 μM PO43−, between 0.2 and 100 μM H4SiO4, from 0.5 to 100 μM NO3−, and between 0.4 and 100 μM NO2−, with detection limits of 0.18 μM, 0.15 μM, 0.45 μM, and 0.35 μM for PO43−, H4SiO4, NO3−, and NO2−, respectively. The analyzer showed good precision with a relative standard deviation of 8.9% for PO43−, 4.8% for H4SiO4, and 7.4% for NO2− plus NO3− during routine analysis of certified reference materials (KANSO, Japan). The analyzer performed well in the field during a 46-day deployment on a pontoon in the Kiel Fjord (located in the southwestern Baltic Sea), with a water supply from a depth of 1 m. The system successfully collected 443, 440, and 409 on-site data points for PO43−, Σ(NO3− + NO2−), and H4SiO4, respectively. Time series data agreed well with data obtained from the analysis of discretely collected samples using standard reference laboratory procedures and showed clear correlations with key hydrographic parameters throughout the deployment period.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3