Heatwave Effects on the Photosynthesis and Antioxidant Activity of the Seagrass Cymodocea nodosa under Contrasting Light Regimes

Author:

Costa Monya M.,Silva JoãoORCID,Barrote IsabelORCID,Santos RuiORCID

Abstract

Global climate change, specifically the intensification of marine heatwaves, affect seagrasses. In the Ria Formosa, saturating light intensities may aggravate heatwave effects on seagrasses, particularly during low spring tides. However, the photophysiological and antioxidant responses of seagrasses to such extreme events are poorly known. Here, we evaluated the responses of Cymodocea nodosa exposed at 20 °C and 40 °C and 150 and 450 μmol quanta m−2 s−1. After four-days, we analyzed (a) photosynthetic responses to irradiance, maximum photochemical efficiency (Fv/Fm), the effective quantum yield of photosystem II (ɸPSII); (b) soluble sugars and starch; (c) photosynthetic pigments; (d) antioxidant responses (ascorbate peroxidase, APX; oxygen radical absorbance capacity, ORAC, and antioxidant capacity, TEAC); (d) oxidative damage (malondialdehyde, MDA). After four days at 40 °C, C. nodosa showed relevant changes in photosynthetic pigments, independent of light intensity. Increased TEAC and APX indicated an “investment” in the control of reactive oxygen species levels. Dark respiration and starch concentration increased, but soluble sugar concentrations were not affected, suggesting higher CO2 assimilation. Our results show that C. nodosa adjusts its photophysiological processes to successfully handle thermal stress, even under saturating light, and draws a promising perspective for C. nodosa resilience under climate change scenarios.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3