Development of a Sensor with a Lipid/Polymer Membrane Comprising Na+ Ionophores to Evaluate the Saltiness Enhancement Effect

Author:

Nakatani Futa,Ienaga Tomofumi,Wu Xiao,Tahara Yusuke,Ikezaki Hidekazu,Sano Hiroyuki,Muto Yuki,Kaneda Yuya,Toko Kiyoshi

Abstract

The saltiness enhancement effect is the effect whereby saltiness is enhanced by adding specific substances to salt (sodium chloride). Since this effect can be used in the development of salt-reduced foods, a method to objectively evaluate the saltiness with this effect is required. A taste sensor with lipid/polymer membranes has been used to quantify the taste of food and beverages in recent years. The sensor electrodes of this taste sensor have the feature of selectively responding to each of the five basic tastes, which is realized by the lipid/polymer membranes. In this study, we developed a new saltiness sensor based on the lipid/polymer membrane with the aim of quantifying the saltiness enhancement effect. In addition to the conventional components of a lipid, plasticizer, and polymer supporting reagent, the membrane we developed comprises ionophores, which selectively capture sodium ions. As a result, the response of the sensor increased logarithmically with the activity of NaCl in measured samples, similarly to the taste response of humans. In addition, all of the sensor responses increased upon adding saltiness-enhancing substances, such as citric acid, tartaric acid and branched-chain amino acids (BCAAs), to NaCl samples. These findings suggest that it is possible to quantify the saltiness enhancement effect using a taste sensor with lipid/polymer membranes.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. EVIDENCE FOR RELATIONSHIP BETWEEN SODIUM (CHLORIDE) INTAKE AND HUMAN ESSENTIAL HYPERTENSION

2. Sodium Reduction and Its Effect on Food Safety, Food Quality, and Human Health

3. An enhancing effect on the saltiness of sodium chloride of added amino acids and their esters;Tamura;Agric. Biol. Chem.,1989

4. Utilization of L-leucine can reduce the salt content in food;Harada;Jpn. J. Tast. Smell Res.,2007

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3