Landslide Susceptibility Assessment Model Construction Using Typical Machine Learning for the Three Gorges Reservoir Area in China

Author:

Cheng JunyingORCID,Dai XiaoaiORCID,Wang Zekun,Li JingzhongORCID,Qu GeORCID,Li WeileORCID,She Jinxing,Wang Youlin

Abstract

The Three Gorges Reservoir region in China is the Yangtze River Economic Zone’s natural treasure trove. Its natural environment has an important role in development. The unique and fragile ecosystem in the Yangtze River’s Three Gorges Reservoir region is prone to natural disasters, including soil erosion, landslides, debris flows, landslides, and earthquakes. Therefore, to better alleviate these threats, an accurate and comprehensive assessment of the susceptibility of this area is required. In this study, based on the collection of relevant data and existing research results, we applied machine learning models, including logistic regression (LR), the random forest model (RF), and the support vector machine (SVM) model, to analyze landslide susceptibility in the Yangtze River’s Three Gorges Reservoir region to analyze landslide events in the whole study region. The models identified five categories (i.e., topographic, geological, ecological, meteorological, and human engineering activities), with nine independent variables, influencing landslide susceptibility. The accuracy of landslide susceptibility derived from different models and raster cells was then verified by the accuracy, recall, F1-score, ROC curve, and AUC of each model. The results illustrate that the accuracy of different machine learning algorithms is ranked as SVM > RF > LR. The LR model has the lowest generalization ability. The SVM model performs well in all regions of the study area, with an AUC value of 0.9708 for the entire Three Gorges Reservoir area, indicating that the SVM model possesses a strong spatial generalization ability as well as the highest robustness and can be adapted as a real-time model for assessing regional landslide susceptibility.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3