Recognition of the Bare Soil Using Deep Machine Learning Methods to Create Maps of Arable Soil Degradation Based on the Analysis of Multi-Temporal Remote Sensing Data

Author:

Rukhovich Dmitry I.,Koroleva Polina V.,Rukhovich Danila D.,Rukhovich Alexey D.

Abstract

The detection of degraded soil distribution areas is an urgent task. It is difficult and very time consuming to solve this problem using ground methods. The modeling of degradation processes based on digital elevation models makes it possible to construct maps of potential degradation, which may differ from the actual spatial distribution of degradation. The use of remote sensing data (RSD) for soil degradation detection is very widespread. Most often, vegetation indices (indicative botany) have been used for this purpose. In this paper, we propose a method for constructing soil maps based on a multi-temporal analysis of the bare soil surface (BSS). It is an alternative method to the use of vegetation indices. The detection of the bare soil surface was carried out using the spectral neighborhood of the soil line (SNSL) technology. For the automatic recognition of BSS on each RSD image, computer vision based on deep machine learning (neural networks) was used. A dataset of 244 BSS distribution masks on 244 Landsat 4, 5, 7, and 8 scenes over 37 years was developed. Half of the dataset was used as a training sample (Landsat path/row 173/028). The other half was used as a test sample (Landsat path/row 174/027). Binary masks were sufficient for recognition. For each RSD pixel, value “1” was set when determining the BSS. In the absence of BSS, value “0” was set. The accuracy of the machine prediction of the presence of BSS was 75%. The detection of degradation was based on the average long-term spectral characteristics of the RED and NIR bands. The coefficient Cmean, which is the distance of the point with the average long-term values of RED and NIR from the origin of the spectral plane RED/NIR, was calculated as an integral characteristic of the mean long-term values. Higher long-term average values of spectral brightness served as indicators of the spread of soil degradation. To test the method of constructing soil degradation maps based on deep machine learning, an acceptance sample of 133 Landsat scenes of path/row 173/026 was used. On the territory of the acceptance sample, ground verifications of the maps of the coefficient Cmean were carried out. Ground verification showed that the values of this coefficient make it possible to estimate the content of organic matter in the plow horizon (R2 = 0.841) and the thickness of the humus horizon (R2 = 0.8599). In total, 80 soil pits were analyzed on an area of 649 ha on eight agricultural fields. Type I error (false positive) of degradation detection was 17.5%, and type II error (false negative) was 2.5%. During the determination of the presence of degradation by ground methods, 90% of the ground data coincided with the detection of degradation from RSD. Thus, the quality of machine learning for BSS recognition is sufficient for the construction of soil degradation maps. The SNSL technology allows us to create maps of soil degradation based on the long-term average spectral characteristics of the BSS.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3