Multi-Dimensional Low-Rank with Weighted Schatten p-Norm Minimization for Hyperspectral Anomaly Detection

Author:

Chen Xi’ai12ORCID,Wang Zhen12,Wang Kaidong3,Jia Huidi124,Han Zhi12ORCID,Tang Yandong12ORCID

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China

3. Center for Intelligent Decision-Making and Machine Learning, School of Management, Xi’an Jiaotong University, Xi’an 710049, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Hyperspectral anomaly detection is an important unsupervised binary classification problem that aims to effectively distinguish between background and anomalies in hyperspectral images (HSIs). In recent years, methods based on low-rank tensor representations have been proposed to decompose HSIs into low-rank background and sparse anomaly tensors. However, current methods neglect the low-rank information in the spatial dimension and rely heavily on the background information contained in the dictionary. Furthermore, these algorithms show limited robustness when the dictionary information is missing or corrupted by high level noise. To address these problems, we propose a novel method called multi-dimensional low-rank (MDLR) for HSI anomaly detection. It first reconstructs three background tensors separately from three directional slices of the background tensor. Then, weighted schatten p-norm minimization is employed to enforce the low-rank constraint on the background tensor, and LF,1-norm regularization is used to describe the sparsity in the anomaly tensor. Finally, a well-designed alternating direction method of multipliers (ADMM) is employed to effectively solve the optimization problem. Extensive experiments on four real-world datasets show that our approach outperforms existing anomaly detection methods in terms of accuracy.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

CAS Project for Young Scientists in Basic Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3