A Machine Learning Strategy Based on Kittler’s Taxonomy to Detect Anomalies and Recognize Contexts Applied to Monitor Water Bodies in Environments

Author:

Dias Maurício AraújoORCID,Marinho Giovanna CarreiraORCID,Negri Rogério GalanteORCID,Casaca WallaceORCID,Muñoz Ignácio Bravo,Eler Danilo MedeirosORCID

Abstract

Environmental monitoring, such as analyses of water bodies to detect anomalies, is recognized worldwide as a task necessary to reduce the impacts arising from pollution. However, the large number of data available to be analyzed in different contexts, such as in an image time series acquired by satellites, still pose challenges for the detection of anomalies, even when using computers. This study describes a machine learning strategy based on Kittler’s taxonomy to detect anomalies related to water pollution in an image time series. We propose this strategy to monitor environments, detecting unexpected conditions that may occur (i.e., detecting outliers), and identifying those outliers in accordance with Kittler’s taxonomy (i.e., detecting anomalies). According to our strategy, contextual and non-contextual image classifications were semi-automatically compared to find any divergence that indicates the presence of one type of anomaly defined by the taxonomy. In our strategy, models built to classify a single image were used to classify an image time series due to domain adaptation. The results 99.07%, 99.99%, 99.07%, and 99.53% were achieved by our strategy, respectively, for accuracy, precision, recall, and F-measure. These results suggest that our strategy allows computers to recognize contexts and enhances their capabilities to solve contextualized problems. Therefore, our strategy can be used to guide computational systems to make different decisions to solve a problem in response to each context. The proposed strategy is relevant for improving machine learning, as its use allows computers to have a more organized learning process. Our strategy is presented with respect to its applicability to help monitor environmental disasters. A minor limitation was found in the results caused by the use of domain adaptation. This type of limitation is fairly common when using domain adaptation, and therefore has no significance. Even so, future work should investigate other techniques for transfer learning.

Funder

FOUNDATION FOR RESEARCH SUPPORT OF THE STATE OF SÃO PAULO

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3