Dimensionality Reduction and Anomaly Detection Based on Kittler’s Taxonomy: Analyzing Water Bodies in Two Dimensional Spaces

Author:

Marinho Giovanna Carreira1ORCID,Júnior Wilson Estécio Marcílio1ORCID,Dias Mauricio Araujo1ORCID,Eler Danilo Medeiros1ORCID,Negri Rogério Galante2ORCID,Casaca Wallace3ORCID

Affiliation:

1. Department of Mathematics and Computer Science, Faculty of Sciences and Technology, Campus Presidente Prudente, São Paulo State University (UNESP), Sao Paulo 19060-900, Brazil

2. Department of Environmental Engineering, Institute of Sciences and Technology, Campus São José dos Campos, São Paulo State University (UNESP), Sao Paulo 12247-004, Brazil

3. Department of Computer Science and Statistics, Institute of Biosciences, Letters and Exact Sciences, Campus São José do Rio Preto, São Paulo State University (UNESP), Sao Paulo 15054-000, Brazil

Abstract

Dimensionality reduction is one of the most used transformations of data and plays a critical role in maintaining meaningful properties while transforming data from high- to low-dimensional spaces. Previous studies, e.g., on image analysis, comparing data from these two spaces have found that, generally, any study related to anomaly detection can achieve the same or similar results when applied to both dimensional spaces. However, there have been no studies that compare differences in these spaces related to anomaly detection strategy based on Kittler’s Taxonomy (ADS-KT). This study aims to investigate the differences between both spaces when dimensionality reduction is associated with ADS-KT while analyzing a satellite image. Our methodology starts applying the pre-processing phase of the ADS-KT to create the high-dimensional space. Next, a dimensionality reduction technique generates the low-dimensional space. Then, we analyze extracted features from both spaces based on visualizations. Finally, machine-learning approaches, in accordance with the ADS-KT, produce results for both spaces. In the results section, metrics assessing transformed data present values close to zero contrasting with the high-dimensional space. Therefore, we conclude that dimensionality reduction directly impacts the application of the ADS-KT. Future work should investigate whether dimensionality reduction impacts the ADS-KT for any set of attributes.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3