Research on Generalized RQD of Rock Mass Based on 3D Slope Model Established by Digital Close-Range Photogrammetry

Author:

Ding Qing,Wang FengyanORCID,Chen Jianping,Wang MingchangORCID,Zhang Xuqing

Abstract

The traditional method of obtaining rock quality designation (RQD) cannot fully reflect the anisotropy of the rock mass and thus cannot accurately reflect its quality. In the method of calculating RQD based on three-dimensional network simulation of discontinuities, due to the limited number of samples and low accuracy of discontinuity data obtained by manual contact measurement, a certain deviation in the network is generated based on the data, which has an impact on the calculation result. Taking a typical slope in Dongsheng quarry in Changchun City as an example, in this study, we obtained the discontinuity data of the slope based on digital close-range photogrammetry, which greatly enlarged the sample size of discontinuity data and improved the data quality. Based on the heterogeneity of the rock mass, the optimum threshold of discontinuity spacing was determined when surveying lines were laid parallel to different coordinate axes to calculate the generalized RQD, and the influence of measuring blank areas on the slope caused by vegetation coverage or gravel accumulation was eliminated. The real generalized RQD of the rock mass after eliminating the influence of blank areas was obtained. Experiments showed that, after eliminating the influence of blank areas, the generalized RQD of the slope rock mass more truly represented the complete quality of rock mass and offers a new idea for the quality evaluation of engineering rock mass.

Funder

National Natural Science Foundation of China

Key Project of NSFC-Yunnan Joint Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3