Estimating RQD for Rock Masses Based on a Comprehensive Approach

Author:

Shen Wei1,Ni Weida2,Yong Rui1,Huang Lei3,Ye Jun1ORCID,Luo Zhanyou1,Du Shigui1

Affiliation:

1. School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China

2. Huadong Engineering Corporation Limited, Power Construction Corporation of China, Hangzhou 310014, China

3. Badong National Observation and Research Station of Geohazards, China University of Geosciences, Wuhan 430074, China

Abstract

Rock Quality Designation (RQD) is among the widely used measures of the quality of rock masses and can be derived through Monte Carlo stochastic process-based fracture network simulations. However, repeated simulations can yield variable RQD results. Here, we introduce a four-step approach that incorporates class ratio analysis to estimate the representative RQD, which includes (1) extracting the mean and confidence interval of the RQD sample, in terms of the Confidence Neutrosophic Number Cubic Value (CNNCV), (2) employing class ratio analysis to determine the thresholds of the number of virtual boreholes and that of the number of models for a given size D, beyond which the CNNCV remains substantially unchanged, (3) accepting the CNNCV at the thresholds of the number of models as the representative RQD for the model of size D (RQD(D)) and (4) determining the representative RQD (rRQD), defined as the specific value which, once D exceeds, the RQD(D) does not change significantly. The introduced approach is illustrated with a case study of an open-pit slope in China, and it was tested for its performance. The RQD calculation results of the proposed method and the traditional single-model approach exhibit differences, which diminish with increasing model sizes. At the 95% confidence level, the stable size of the RQD determined by the proposed method is 13 m, compared to 25 m for the single-model approach. This method enhances the accuracy of representative elementary volume predictions by accounting for the diversity in the simulation results of RQDs for the same size. Overall, the introduced approach offers a reliable method for obtaining RQD estimates.

Funder

National Natural Science Foundation of China

Zhejiang Collaborative Innovation Center for the Prevention and Control of Mountain Geological Hazards

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3