Diurnal Variations of Water Ice in the Martian Atmosphere Observed by Mars Climate Sounder

Author:

Wu ZhaopengORCID,Li TaoORCID,Li Jing,Yang Chengyun,Cui Jun

Abstract

Simulation studies have proposed a significant thermal effect of water ice clouds on the Martian atmosphere and climate. However, previous studies focused more on seasonal variations but less on short-term changes. In this work, we used the MCS multi-local time data to investigate the water ice diurnal variations on Mars. We quantified its diurnal variations with amplitude and phase by applying the tidal fitting method to the water ice abundance. In addition, we found a close correlation (antiphase relation) between the thermal tide and water ice diurnal variations during the aphelion seasons that was not sensitive to both the background water ice and dust opacity but increased with the tidal amplitude. In the perihelion seasons, the antiphase relation was sensitive to the water ice and dust opacity, both affected by the dust storm activity. Finally, the statistic results suggested an unexpected low threshold of diurnal tide amplitude (2 to 3 K) for generating a relevant water ice diurnal variation, accounting for the ubiquitous water ice diurnal variations in the Martian atmosphere. These new observational results can help further understand the phase transition process between ice and vapor in the Martian atmosphere and better constrain the Martian global climate model in the future.

Funder

the B-type Strategic Priority Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3