Observed seasonal changes in Martian hydrogen chloride explained by heterogeneous chemistry

Author:

Taysum Benjamin M.ORCID,Palmer Paul I.ORCID,Olsen KevinORCID,Luginin Mikhail,Ignatiev Nikolay,Trokhimovskiy AlexanderORCID,Shakun Alexey,Grigoriev Alexey V.ORCID,Montmessin Franck,Korablev OlegORCID

Abstract

Aims. The aim of this work is to show that the seasonal changes and vertical distribution profiles of hydrogen chloride (HCl) on Mars, as observed by the ExoMars Trace Gas Orbiter, are consistent with the production of gas-phase chlorine atoms from airborne dust and a subsequent rapid uptake of HCl onto water ice particles. Methods. A 1D photochemistry model was equipped with a chlorine reaction network and driven by dust, water ice, and water vapour profiles measured by the ExoMars Trace Gas Orbiter instrumentation in Mars year 34. The release of Cl and O atoms from airborne dust via the hydration and photolysis of perchlorate within dust grains was parameterised using prior laboratory studies, and the heterogeneous uptake of chlorine species onto dust and water ice was included for processes known to occur in Earth’s atmosphere. Results. Observed seasonal variations in Martian HCl are reproduced by the model, which yielded low HCl abundances (<1 ppbv) prior to the dust season that rise to 2–6 ppbv in southern latitudes during the dust season. Structured atmospheric layers that coincide with locations where water ice is absent are also produced. As a consequence of the Cl atoms released via our proposed mechanism, the atmospheric lifetime of methane is shortened by two orders of magnitude. This suggests that the production of Cl induced by the breakdown of hydrated perchlorate via UV radiation (or another electromagnetic radiation) in airborne Martian dust, consistent with observed profiles of HCl, could help reconcile reported variations in methane with photochemical models.

Funder

UK Space Agency

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3