A Novel Remote Visual Inspection System for Bridge Predictive Maintenance

Author:

Galdelli AlessandroORCID,D’Imperio MariapaolaORCID,Marchello Gabriele,Mancini AdrianoORCID,Scaccia Massimiliano,Sasso Michele,Frontoni EmanueleORCID,Cannella FerdinandoORCID

Abstract

Predictive maintenance on infrastructures is currently a hot topic. Its importance is proportional to the damages resulting from the collapse of the infrastructure. Bridges, dams and tunnels are placed on top on the scale of severity of potential damages due to the fact that they can cause loss of lives. Traditional inspection methods are not objective, tied to the inspector’s experience and require human presence on site. To overpass the limits of the current technologies and methods, the authors of this paper developed a unique new concept: a remote visual inspection system to perform predictive maintenance on infrastructures such as bridges. This is based on the fusion between advanced robotic technologies and the Automated Visual Inspection that guarantees objective results, high-level of safety and low processing time of the results.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting bridge condition index using an improved back-propagation neural network;Alexandria Engineering Journal;2024-11

2. 4IPLAY - Improving Intelligent Infrastructure Inspection by Pushing UAS Level of Autonomy in Challenging Environments;2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace);2024-06-03

3. Bilateral Half-Box Image Filtering;International Journal of Automation Technology;2024-05-05

4. An Analysis of Robotic Dog’s Machine Learning-Based Detection for Pedestrians and Vehicles;2024 International Conference on Intelligent Computing and Robotics (ICICR);2024-04-12

5. In the Direction of an Artificial Intelligence-Enabled Monitoring Platform for Concrete Structures;Sensors;2024-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3