Bridge Crack Semantic Segmentation Based on Improved Deeplabv3+

Author:

Fu Huixuan,Meng Dan,Li Wenhui,Wang Yuchao

Abstract

Cracks are the main goal of bridge maintenance and accurate detection of cracks will help ensure their safe use. Aiming at the problem that traditional image processing methods are difficult to accurately detect cracks, deep learning technology was introduced and a crack detection method based on an improved DeepLabv3+ semantic segmentation algorithm was proposed. In the network structure, the densely connected atrous spatial pyramid pooling module was introduced into the DeepLabv3+ network, which enabled the network to obtain denser pixel sampling, thus enhancing the ability of the network to extract detail features. While obtaining a larger receptive field, the number of network parameters was consistent with the original algorithm. The images of bridge cracks under different environmental conditions were collected, and then a concrete bridge crack segmentation data set was established, and the segmentation model was obtained through end-to-end training of the network. The experimental results showed that the improved DeepLabv3+ algorithm had higher crack segmentation accuracy than the original DeepLabv3+ algorithm, with an average intersection ratio reaching 82.37%, and the segmentation of crack details was more accurate, which proved the effectiveness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3