Abstract
In this paper, we propose a smart insole for inexpensive plantar pressure sensing and a simple visualizing scheme. The insole is composed of two elastomeric layers and two electrode layers where the common top electrode is submerged in the insole. The upper elastomeric layer is non-conductive poly-dimethyl-siloxane (PDMS) and supports plantar pressure buffering and the lower layer is carbon nano-tube (CNT)-dispersed PDMS for pressure sensing through piezo-resistivity. Under the lower sensing layer are 16 bottom electrodes for pressure distribution sensing without cell-to-cell interference. Since no soldering or sewing is needed the smart insole manufacturing processes is simple and cost-effective. The pressure sensitivity and time response of the material was measured and based on the 16 sensing data of the smart insole, we virtually extended the frame size for continuous and smoothed pressure distribution image with the help of a simple pseudo interpolation scheme.
Funder
Institute for Information and communications Technology Promotion
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献