Abstract
In this article, I consider local solutions of the 3D Navier–Stokes equations and its properties such as an existence of global and smooth solution, uniform boundedness. The basic role is assigned to a special invariant class of solenoidal vector fields and three parameters that are invariant with respect to the scaling procedure. Since in spaces of even dimensions the scaling procedure is a conformal mapping on the Heisenberg group, then an application of invariant parameters can be considered as the application of conformal invariants. It gives the possibility to prove the sufficient and necessary conditions for existence of a global regular solution. This is the main result and one among some new statements. With some compliments, the rest improves well-known classical results.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Reference37 articles.
1. Neuere Methoden und Ergebnisse der Hydrodynamik;Oseen,1927
2. Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten;Oldquist;Math. Z.,1930
3. Sur le mouvement d'un liquide visqueux emplissant l'espace
4. Etude de diverses equations integrales non lineaires et de quelques problemes que pose l’hydrodynamique;Leray;J. Math. Pure Appl.,1933
5. Essai sur les mouvements plans d’un liquide visqueux que limitent des parois;Leray;J. Math. Pures Appl.,1933
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献