About Bellman Principle and Solution Properties for Navier–Stokes Equations in the 3D Cauchy Problem

Author:

I. Semenov Vladimir

Abstract

Without belittling the achievements of many mathematicians in the studying of the Navier-Stokes equations, the real ways opened J. Leray and O.A. Ladyzhenskaya. The main goal of this work is to compare the smoothness property of a weak solution in the Cauchy problem after some moment if it is known solution regularity until this moment with the optimality property in the Bellman principle. Naturally, all these are connected with the existence problem of blow up solution in the Cauchy problem for Navier-Stokes equations in space attracting a lot of attention up to now. The smoothness control and controlling parameters can be varied. It is important to control the dissipation of kinetic energy to the fix moment or rate of change of kinetic energy square or the summability of velocity gradient to the fixed point in time and so on. There are possible other control parameters due to a weak solution.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3