A Review of Distributed Secondary Control Architectures in Islanded-Inverter-Based Microgrids

Author:

Rodriguez-Martinez Omar F.ORCID,Andrade FabioORCID,Vega-Penagos Cesar A.ORCID,Luna Adriana C.ORCID

Abstract

The increasing energy demand, the shortage of energy resources, and the environmental challenges faced by conventional power-generation systems are some of the ongoing challenges faced by modern power systems. Therefore, many efforts have been made by the scientific community to develop comprehensive solutions to overcome these issues. For instance, current technological advances have allowed the integration of distributed generators into the power systems, promoting the use of microgrids to overcome these issues. However, the use of renewable distributed generators have introduced new challenges to the traditional control system schemes. To overcome these challenges, a hierarchical control approach has been proposed for distributed renewable sources. In other words, the control scheme have been divided into three hierarchical levels, primary, secondary, and tertiary, to overcome the new challenges present in modern power systems. Due to extensiveness of this topic, this overview is focused on secondary control systems, mainly for AC isolated microgrids. To improve the power quality of modern systems, several secondary control schemes have been proposed to overcome the well-known problem of frequency and voltage deviation. Some of these schemes have also introduced adequate active/reactive power sharing techniques to optimize the utilization of resources. Additionally, other secondary control schemes have also focused on reducing the communication load, to lower the network cost and adding robustness against communication problems. This article presents an insight of the different control techniques used to overcome power quality and communication problems. A comprehensive overview of distributed secondary control techniques for islanded microgrids is presented. In addition, the implementation of these techniques is explained in an orderly and sequential manner.

Funder

U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference74 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decentralized Virtual Impedance Control for Power Sharing and Voltage Regulation in Islanded Mode with Minimized Circulating Current;Electronics;2024-05-30

2. Secondary Control of Battery Energy Storages in Hybrid Microgrids;2024 IEEE/PES Transmission and Distribution Conference and Exposition (T&D);2024-05-06

3. Power System Analysis;Advances in Computer and Electrical Engineering;2024-03-15

4. Optimized Control of an Isolated Wind Energy Conversion System;Green Energy and Technology;2024

5. Centralized Secondary Microgrid Controller Based on Smith Predictor and Fuzzy Logic to Address Communication Delay Uncertainties;2023 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT-LA);2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3