Decentralized Virtual Impedance Control for Power Sharing and Voltage Regulation in Islanded Mode with Minimized Circulating Current

Author:

Khan Mubashir Hayat1ORCID,Zulkifli Shamsul Aizam2ORCID,Tutkun Nedim3,Ekmekci Ismail4ORCID,Burgio Alessandro5

Affiliation:

1. Department of Electrical Engineering, University of Poonch Rawalakot AJ&K, Rawalakot 12350, Pakistan

2. Department of Electrical Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia

3. Department of Electrical and Electronics Engineering, Istanbul Ticaret University, 34840 Istanbul, Türkiye

4. Department of Industrial Engineering, Istanbul Ticaret University, 34840 Istanbul, Türkiye

5. Independent Researcher, 87036 Rende, Italy

Abstract

In islanded operation, precise power sharing is an immensely critical challenge when there are different line impedance values among the different-rated inverters connected to the same electrical network. Issues in power sharing and voltage compensation at the point of common coupling, as well as the reverse circulating current between inverters, are problems in existing control strategies for parallel-connected inverters if mismatched line impedances are not addressed. Therefore, this study aims to develop an improved decentralized controller for good power sharing with voltage compensation using the predictive control scheme and circulating current minimization between the inverters’ current flow. The controller was developed based on adaptive virtual impedance (AVI) control, combined with finite control set–model predictive control (FCS-MPC). The AVI was used for the generation of reference voltage, which responded to the parameters from the virtual impedance loop control to be the input to the FCS-MPC for a faster tracking response and to have minimum tracking error for better pulse-width modulation generation in the space-vector form. As a result, the circulating current was maintained at below 5% and the inverters were able to share an equal power based on the load required. At the end, the performance of the AVI-based control scheme was compared with those of the conventional and static-virtual-impedance-based methods, which have also been tested in simulation using MATLAB/Simulink software 2021a version. The comparison results show that the AVI FCS MPC give 5% error compared to SVI at 10% and conventional PI at 20%, in which AVI is able to minimize the circulating current when mismatch impedance is applied to the DGs.

Funder

Research Management Centre

Research University Grant Program of Universiti Tun Hussein Onn Malaysia

Istanbul Ticaret University, Türkiye

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3