Application of Principal Component Analysis Approach to Predict Shear Strength of Reinforced Concrete Beams with Stirrups

Author:

Koo SeungbumORCID,Shin DongikORCID,Kim ChanghyukORCID

Abstract

The reinforced concrete (RC) member’s shear strength estimation has been experimentally studied in most cases due to its nonlinear behavior. Many empirical equations have been derived from the experimental data; however, even those adopted in the construction codes do not thoroughly and accurately describe their shear behavior. Theoretically explained equations, on the other hand, are aligned with the experiment; however, they are complicated to use in practice. As shear behavior research is data-driven, the machine learning technique is applicable. Herein, an artificial neural network (ANN) algorithm is trained with 776 experiment results collected from available publications. The raw data is preprocessed by principal component analysis (PCA) before the application of the ANN technique. The predictions of the trained algorithm using ANN with PCA are compared to those of formulae adopted in a few existing building codes. Finally, a parametric study is conducted, and the significance of each variable to the strength of RC members is analyzed.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3