Simulation and Printing of Microdroplets Using Straight Electrode-Based Electrohydrodynamic Jet for Flexible Substrate

Author:

Wang Dazhi,Abbas ZeshanORCID,Lu Liangkun,Liu Chang,Zhang Jie,Pu Changchang,Li Yikang,Yin Penghe,Zhang Xi,Liang Junsheng

Abstract

Electrohydrodynamic jet (e-jet) printing is a modern and decent fabrication method widely used to print high-resolution versatile microstructures with features down to 10 μm. It is currently difficult to break nanoscale resolution (<100 nm) due to limitations of fluid properties, voltage variations, and needle shapes. This paper presents developments in drop-on-demand e-jet printing based on a phase-field method using a novel combined needle and straight electrode to print on a flexible PET substrate. Initially, the simulation was performed to form a stable cone jet by coupling an innovative straight electrode parallel to a combined needle that directs the generation of droplets at optimized parameters, such as f = 8.6 × 10−10 m3s−1, Vn = 9.0 kV, and Vs = 4.5 kV. Subsequently, printing experiments were performed using optimized processing parameters and all similar simulation conditions. Microdroplets smaller than 13 μm were directly printed on PET substrate. The model is considered unique and powerful for printing versatile microstructures on polymeric substrates. The presented method is useful for MEMS technology to fabricate various devices, such as accelerometers, smartphones, gyroscopes, sensors, and actuators.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference42 articles.

1. Numerical simulation of electrohydrodynamic jet and printing micro-structures on flexible substrate

2. Retreat behavior of a charged droplet for electrohydrodynamic inkjet printing;Byun;Appl. Phys. Lett.,2011

3. Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process

4. Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization

5. Stabilizing meniscus shape to improve pattern uniformity in Drop-on-demand EHD inkjet printing using visual feedback;Nguyen;Proceedings of the 2012 12th International Conference on Control, Automation and Systems,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3