Adaptive Constant-Current/Constant-Voltage Charging of a Battery Cell Based on Cell Open-Circuit Voltage Estimation

Author:

Pavković Danijel1ORCID,Kasać Josip1ORCID,Krznar Matija1ORCID,Cipek Mihael1ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia

Abstract

This paper presents the novel design of a constant-current/constant-voltage charging control strategy for a battery cell. The proposed control system represents an extension of the conventional constant-current/constant-voltage charging based on the so-called cascade control system arrangement with the adaptation of the battery charging current based on the open-circuit voltage parameter estimation. The proposed control strategy features two feedback controllers of the proportional-integral type responsible for: (i) controlling the battery open-circuit voltage towards its fully charged state, and (ii) simultaneously limiting the battery terminal voltage to avoid the battery terminal voltage constraint violation. The open-circuit voltage on-line estimation is implemented by using the system reference adaptive model approach to estimate the linear time-invariant battery equivalent circuit model parameters, whose asymptotic convergence is guaranteed according to Lyapunov stability theory. The proposed concept of the battery charging control is verified by means of simulations using the experimentally obtained model of a lithium iron phosphate battery cell, and it is also compared to other charging methods with respect to charging speed-up potential compared to conventional charging. The proposed method, which can be easily extended to conventional chargers, results in 23.9% faster charging compared to conventional charging, thus representing an inexpensive and straightforward upgrade to conventional battery charging systems.

Funder

the Horizon 2020 project “Maximizing the impact of innovative energy approaches in the EU islands”

European Regional Development Fund

Publisher

MDPI AG

Subject

Automotive Engineering

Reference58 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3