Open-Source Energy, Entropy, and Exergy 0D Heat Release Model for Internal Combustion Engines

Author:

Depcik Christopher1ORCID,Mattson Jonathan1,Alam Shah Saud1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Kansas, 3138 Learned Hall, 1530 W. 15th Street, Lawrence, KS 66045, USA

Abstract

Internal combustion engines face increased market, societal, and governmental pressures to improve performance, requiring researchers to utilize modeling tools capable of a thorough analysis of engine performance. Heat release is a critical aspect of internal combustion engine diagnostic analysis, but is prone to variability in modeling validity, particularly as engine operation is pushed further from conventional combustion regimes. To that end, this effort presents a comprehensive open-source, zero-dimensional equilibrium heat release model. This heat release analysis is based on a combined mass, energy, entropy, and exergy formulation that improves upon well-established efforts constructed around the ratio of specific heats. Furthermore, it incorporates combustion using an established chemical kinetics mechanism to endeavor to predict the global chemical species in the cylinder. Future efforts can augment and improve the chemical kinetics reactions for specific combustion conditions based on the radical pyrolysis of the fuel. In addition, the incorporation of theoretical calculations of energy and exergy based on the change in chemical species allows for cross-checking of combustion model validity.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference50 articles.

1. Heywood, J.B. (2018). Internal Combustion Engine Fundamentals, McGraw-Hill Education. [2nd ed.].

2. Heat Release Analysis of Engine Pressure Data;Gatowski;SAE Trans.,1984

3. Characterising Wiebe Equation for Heat Release Analysis based on Combustion Burn Factor (Ci);Abbaszadehmosayebi;Fuel,2014

4. Emissions-Calibrated Equilibrium Heat Release Model for Direct Injection Compression Ignition Engines;Mattson;Fuel,2014

5. Investigating the Compression Ignition Combustion of Multiple Biodiesel/ULSD (Ultra-Low Sulfur Diesel) Blends via Common-Rail Injection;Mangus;Energy,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3