Electric Vehicle Battery-Connected Parallel Distribution Generators for Intelligent Demand Management in Smart Microgrids

Author:

Jasim Ali M.12ORCID,Jasim Basil H.1ORCID,Neagu Bogdan-Constantin3ORCID,Attila Simo4ORCID

Affiliation:

1. Electrical Engineering Department, University of Basrah, Basrah 61001, Iraq

2. Department of Communications Engineering, Iraq University College, Basrah 61001, Iraq

3. Power Engineering Department, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania

4. Power Systems Department, Politehnica University Timisoara, No. 2, V. Parvan Bvd., 300223 Timisoara, Romania

Abstract

Renewable energy penetration increases Smart Grid (SG) instability. A power balance between consumption and production can mitigate this instability. For this, intelligent and optimizing techniques can be used to properly combine and manage storage devices like Electric Vehicle Batteries (EVBs) with Demand-Side Management (DSM) strategies. The EVB helps distribution networks with auxiliary services, backup power, reliability, demand response, peak shaving, lower renewable power production’s climate unpredictability, etc. In this paper, a new energy management system based on Artificial Neural Networks (ANNs) is developed to maximize the performance of islanded SG-connected EVBs. The proposed ANN controller can operate at specified periods based on the demand curve and EVB charge level to implement a peak load shaving (PLS) DSM strategy. The intelligent controller’s inputs include the time of day and the EVB’s State of Charge (SOC). After the controller detects a peak demand, it alerts the EVB to start delivering power. This decrease in peak demand enhances the load factor and benefits both SG investors and end users. In this study, the adopted SG includes five parallel Distribution Generators (DGs) powered by renewable resources, which are three solar Photovoltaics (PVs) and two Wind Turbines (WTs). Sharing power among these DGs ensures the SG’s stability and efficiency. To fulfill demand problem-free, this study dynamically alters the power flow toward equity in power sharing using virtual impedance-based adaptive primary control level. This study proposes a decentralized robust hierarchical secondary control system employing Genetic Algorithm (GA)-optimized Proportional-Integral (PI) controller parameters with fine-grained online tuning using ANNs to restore frequency and voltage deviations. The proposed system is evidenced to be effective through MATLAB simulations and real-time data analysis on the ThingSpeak platform using internet energy technology. Our presented model not only benefits users by enhancing their utility but also reduces energy costs with robust implementation of a control structure by restoring any frequency and voltage deviations by distributing power equally among DGs regardless of demand condition variations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3