Integrated Demand Response in Multi-Energy Microgrids: A Deep Reinforcement Learning-Based Approach

Author:

Xu Chenhui1,Huang Yunkai1ORCID

Affiliation:

1. School of Electrical Engineering, Southeast University, Nanjing 210096, China

Abstract

The increasing complexity of multi-energy coordinated microgrids presents a challenge for traditional demand response providers to adapt to end users’ multi-energy interactions. The primary aim of demand response providers is to maximize their total profits via designing a pricing strategy for end users. The main challenge lies in the fact that DRPs have no access to the end users’ private preferences. To address this challenge, we propose a deep reinforcement learning-based approach to devise a coordinated scheduling and pricing strategy without requiring any private information. First, we develop an integrated scheduling model that combines power and gas demand response by converting multiple energy sources with different types of residential end users. Then, we formulate the pricing strategy as a Markov Decision Process with an unknown transition. The novel soft actor-critic algorithm is utilized to efficiently train neural networks with the entropy function and to learn the pricing strategies to maximize demand response providers’ profits under various sources of uncertainties. Case studies are conducted to demonstrate the effectiveness of the proposed approach in both deterministic and stochastic environment settings. Our proposed approach is also shown to be effective in handling different levels of uncertainties and achieving the near-optimal pricing strategy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3