Online EVs Vehicle-to-Grid Scheduling Coordinated with Multi-Energy Microgrids: A Deep Reinforcement Learning-Based Approach

Author:

Pan Weiqi1,Yu Xiaorong2,Guo Zishan1,Qian Tao1,Li Yang1

Affiliation:

1. School of Electrical Engineering, Southeast University, Nanjing 210096, China

2. State Grid Jiangsu Electric Vehicle Service Co., Ltd., Nanjing 320105, China

Abstract

The integration of electric vehicles (EVs) into vehicle-to-grid (V2G) scheduling offers a promising opportunity to enhance the profitability of multi-energy microgrid operators (MMOs). MMOs aim to maximize their total profits by coordinating V2G scheduling and multi-energy flexible loads of end-users while adhering to operational constraints. However, scheduling V2G strategies online poses challenges due to uncertainties such as electricity prices and EV arrival/departure patterns. To address this, we propose an online V2G scheduling framework based on deep reinforcement learning (DRL) to optimize EV battery utilization in microgrids with different energy sources. Firstly, our approach proposes an online scheduling model that integrates the management of V2G and multi-energy flexible demands, modeled as a Markov Decision Process (MDP) with an unknown transition. Secondly, a DRL-based Soft Actor-Critic (SAC) algorithm is utilized to efficiently train neural networks and dynamically schedule EV charging and discharging activities in response to real-time grid conditions and energy demand patterns. Extensive simulations are conducted in case studies to testify to the effectiveness of our proposed approach. The overall results validate the efficacy of the DRL-based online V2G scheduling framework, highlighting its potential to drive profitability and sustainability in multi-energy microgrid operations.

Funder

Jiangsu Province Key Research and Development Program

Jiangsu Key Laboratory of Smart Grid Technology and Equipment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3