Evaluation of Empirical Daily Solar Radiation Models for the Northeast Coast of the Iberian Peninsula

Author:

Vernet Anton1ORCID,Fabregat Alexandre1

Affiliation:

1. Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain

Abstract

The ability to accurately predict daily solar radiation reaching the earth’s surface is essential in applications such as solar power generation. Given their ease of use, many empirical models have been proposed based on different dependent variables such as cloud cover, daily temperature range, etc. In this study we evaluate 23 of these models for the prediction of daily solar radiation in the northern coastal zone of the Iberian Peninsula. Daily measurements during the period 2000–2018 from 16 meteorological stations spread over this area are used to adjust the parameters of each model, whose predictive capacity is then evaluated using measurements made between 2019 and 2022. Using different statistical metrics to assess their predictive performance, it was found that models based on hours of sunshine and level of cloudiness are significantly more accurate than those based on maximum and minimum daily temperature and day of the year. Specifically, the sunshine-based model by SBM3 obtained the highest Global Performance Indicator at 5.05. The results offer insight on the ability of each type of empirical model to accurately predict daily solar radiation in the Mediterranean region.

Funder

Generalitat de Catalunya—AGAUR

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference56 articles.

1. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements, Food and Agriculture Organization of the United Nations. FAO Irrigation and Drainage Paper 56.

2. Remote sensing of photovoltaic scenarios: Techniques, applications and future directions;Chen;Appl. Energy,2023

3. Comparison between solar radiation models based on cloud information;Younes;Int. J. Sustain. Energy,2007

4. Empirical models for estimating global solar radiation: A review and case study;Besharat;Renew. Sustain. Energy Rev.,2013

5. Evaluation and development of empirical model for estimating daily solar radiation;Jahani;Renew. Sustain. Energy Rev.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3