A Global Solar Radiation Forecasting System Using Combined Supervised and Unsupervised Learning Models

Author:

Wei Chih-Chiang1ORCID,Yang Yen-Chen1

Affiliation:

1. Department of Marine Environmental Informatics & Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan

Abstract

One of the most important sources of energy is the sun. Taiwan is located at a 22–25° north latitude. Due to its proximity to the equator, it experiences only a small angle of sunlight incidence. Its unique geographical location can obtain sustainable and stable solar resources. This study uses research on solar radiation forecasts to maximize the benefits of solar power generation, and it develops methods that can predict future solar radiation patterns to help reduce the costs of solar power generation. This study built supervised machine learning models, known as a deep neural network (DNN) and a long–short-term memory neural network (LSTM). A hybrid supervised and unsupervised model, namely a cluster-based artificial neural network (k-means clustering- and fuzzy C-means clustering-based models) was developed. After establishing these models, the study evaluated their prediction results. For different prediction periods, the study selected the best-performing model based on the results and proposed combining them to establish a real-time-updated solar radiation forecast system capable of predicting the next 12 h. The study area covered Kaohsiung, Hualien, and Penghu in Taiwan. Data from ground stations of the Central Weather Administration, collected between 1993 and 2021, as well as the solar angle parameters of each station, were used as input data for the model. The results of this study show that different models offer advantages and disadvantages in predicting different future times. The hybrid prediction system can predict future solar radiation more accurately than a single model.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3