Prediction of the Electricity Generation of a 60-kW Photovoltaic System with Intelligent Models ANFIS and Optimized ANFIS-PSO

Author:

Lara-Cerecedo Luis O.1,Hinojosa Jesús F.1,Pitalúa-Díaz Nun2,Matsumoto Yasuhiro3,González-Angeles Alvaro4ORCID

Affiliation:

1. Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico

2. Departamento de Ingeniería Industrial, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico

3. Departamento de Ingeniería Eléctrica, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Ciudad de México 07360, Mexico

4. Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez S/N, Mexicali 21280, Mexico

Abstract

The development and constant improvement of accurate predictive models of electricity generation from photovoltaic systems provide valuable planning tools for designers, producers, and self-consumers. In this research, an adaptive neuro-fuzzy inference model (ANFIS) was developed, which is an intelligent hybrid model that integrates the ability to learn by itself provided by neural networks and the function of language expression, how fuzzy logic infers, and an ANFIS model optimized by the particle swarm algorithm, both with a predictive capacity of about eight months. The models were developed using the Matlab® software and trained with four input variables (solar radiation, module temperature, ambient temperature, and wind speed) and the electrical power generated from a photovoltaic (PV) system as the output variable. The models’ predictions were compared with the experimental data of the system and evaluated with rigorous statistical metrics, obtaining results of RMSE = 1.79 kW, RMSPE = 3.075, MAE = 0.864 kW, and MAPE = 1.47% for ANFIS, and RMSE = 0.754 kW, RMSPE = 1.29, MAE = 0.325 kW, and MAPE = 0.556% for ANFIS-PSO, respectively. The evaluations indicate that both models have good predictive capacity. However, the PSO integration into the hybrid model allows for improving the predictive capability of the behavior of the photovoltaic system, which provides a better planning tool.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference76 articles.

1. IEA (2020). CO2 Emissions from Fuel Combustion: Overview, IEA.

2. Life Cycle Assessment of PV Systems: Integrated Design Approach for Affordable Housing in Al-Burullus Graduates Villages;Sheta;Mansoura Eng. J.,2020

3. Ito, M. (2011). Crystalline Silicon Properties and Uses, InTech.

4. IEA (2021). World Energy Outlook 2021, IEA. Available online: https://www.iea.org/reports/world-energy-outlook-2021.

5. Ren21 Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2023_GlobalOverview_Full_Report_with_endnotes_web.pdf.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3