Author:
Chan Shih-Shuo,Wu Jung-Hua
Abstract
Wastewater reclamation is a promising solution to growing pressure on limited water resources. In this study we evaluated the efficiency of boron removal from effluent at a water resource recovery facility (WRRF) using a two-stage/two-pass RO membrane system. We propose using measurements of electrical conductivity (EC) as a proxy for boron concentration. We tested our approach to boron estimation and the proposed split partial second pass (SPSP) system at an established WRRF and a pilot plant we constructed at the same location. Results showed that boron in the effluent was directly related to the concentration of EC. The proposed regression equation (y = 4.959 × 10-5x + 0.138) represents a rule of thumb for wastewater plant operators. The proposed SPSP system was optimized through manipulation of operating conditions, achieving a promising total water recovery of 64% at maximum boron rejection (over 85% removal) in a manner that was both cost-effective and flexible. This study demonstrates that two-stage/two-pass split-partial permeate treatment with a high pH for boron removal offers a sustainable freshwater supply option suitable for use by the semiconductor industry.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献