Reverse Osmosis with Intermediate Chemical Demineralization: Scale Inhibitor Selection, Degradation, and Seeded Precipitation

Author:

Xu Shichang1,Wang Ping1,Xie Lixin1,Du Yawei2,Zhang Wen1ORCID

Affiliation:

1. Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

2. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China

Abstract

Two-stage reverse osmosis (RO) processes with intermediate concentrate demineralization (ICD) provide an efficient strategy to treat brines with high CaSO4 contents and reduce concentrate discharge. In this paper, an SRO concentrate is treated using ICD to remove CaSO4 and then mixed with a PRO concentrate for further desalination in SRO, thereby reducing the discharge of the concentrate. We investigate the selection and degradation of scale inhibitors, as well as seeded precipitation in the two-stage RO process with ICD, to achieve a high water recovery rate. A scale inhibitor is added to restrain CaSO4 crystallization on the membrane surface, and the optimized scale inhibitor, RO-400, is found to inhibit calcium sulfate scaling effectively across a wide range of the saturation index of gypsum (SIg) from 2.3 to 6. Under the optimized parameters of 40 W UV light and 70 mg/L H2O2, UV/H2O2 can degrade RO-400 completely in 15 min to destroy the scale inhibitor in the SRO concentrate. After scale inhibitor degradation, the SRO concentrate is desaturated by seeded precipitation, and the reaction degree of CaSO4 reaches 97.12%, leading to a concentrate with a low SIg (1.07) for cyclic desalination. Three UVD-GSP cycle tests show that the reused gypsum seeds can also ensure the effect of the CaSO4 precipitation process. This paper provides a combined UVD-GSP strategy in two-stage RO processes to improve the water recovery rate for CaSO4-contained concentrate.

Funder

Hebei Provincial Central Leading Local Science and Technology Development Fund Project

Hebei Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3