Comparison of the Efficiency of Deammonification under Different DO Concentrations in a Laboratory-Scale Sequencing Batch Reactor

Author:

Al-Hazmi Hussein EzziORCID,Yin ZhixuanORCID,Grubba DominikaORCID,Majtacz Joanna Barbara,Mąkinia Jacek

Abstract

The efficiency of deammonification depends on the cooperation of ammonium oxidizing bacteria and archaea (AOB/AOA), anaerobic ammonium oxidizing bacteria (AnAOB) and the effective suppression of nitrite oxidizing bacteria (NOB) that compete with AnAOB for nitrite (NO2-N). One of the effective NOB suppression strategies is intermittent aeration. However, it is important to have a good understanding of the optimum dissolved oxygen (DO) value in the aeration period and optimize the non-aeration time used during the reaction phase. This study comprised the investigation of the effect of different DO set points (0.4, 0.7, 1.0 and 1.5 mg O2/L) under the same aeration length off/on (12/3 min). Moreover, three different intermittent aeration modes (9/3, 6/3, 3/3) under the same DO set point (0.7 mg O2/L) were more investigated. The experiment was conducted for 6 months (180 days) in a laboratory-scale sequencing batch reactor (SBR) with a working volume of 10 L. The results indicated that a high N removal efficiency was achieved 74% at the DO set point = 0.7 mg O2/L during aeration strategy off/on (6/3 min) due to the low nitrate production rate (NPR) 0.9 mg N/g VSS/h and high ammonium utilization rate (AUR) 13 mg N/g VSS/h (NPR/AUR = 0.06). Mathematical modeling results confirmed that the feasible DO set point 0.7 and intermittent aeration mode off/on (6/3 min) were especially suitable for the optimal balance between the NOB suppression and keeping high activities of AOB and anammox in the system.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3