Impact of mixing intensity on dissolved oxygen half-velocity constants in a sidestream deammonification environment

Author:

Xie Biao1,Jin Chao2,Parker Wayne J.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada

2. Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada

Abstract

Abstract A partial nitritation/anammox (PN/A) process was operated at two different mixing intensities to quantify the extent to which diffusional limitations impact process rates. At a steady-state operation, the total inorganic nitrogen removal efficiency in the bench-scale sequencing batch reactors was found to increase as mixing intensity decreased (62 and 84% for average velocity gradient (G) values of 15 and 5.3 s−1, respectively). The half-velocity constants with respect to bulk-phase dissolved oxygen (DO) concentration for ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) organisms were estimated on the basis of nitrogen removal rates that were observed in activity tests. The activity tests were conducted over a range of bulk-phase DO concentrations. The best-fit values were estimated to be 0.68 ± 0.34 and 0.54 ± 0.56 mg O2/L for G values of 15 and 5.3 s−1, respectively. The AOB values were not statistically different (p = 0.19) between mixing conditions which were consistent with AOB dominating the surface of granules. The best-fit values were estimated to be 0.13 ± 0.09 and 0.55 ± 0.40 mg O2/L for G values of 15 and 5.3 s−1, respectively, and were statistically different . The results demonstrated that mixing conditions should be considered when designing PN/A processes and provide quantitative results that can be employed to improve models of these processes. This article has been made Open Access thanks to the kind support of CAWQ/ACQE (https://www.cawq.ca).

Funder

NSERC

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3