Insular Cycas micronesica Habitats Respond Similarly to Aulacaspis yasumatsui Invasion, Regardless of Co-Occurring Consumers

Author:

Marler Thomas E.12ORCID,Cruz Gil N.3

Affiliation:

1. Bagong Kaalaman Botanikal Institute, 15 Rizal Street, Barangay Malabañas, Angeles 2009, Philippines

2. Cycad Specialist Group, International Union for Conservation of Nature Species Survival Commission, Rue Mauverney 28, 1196 Gland, Switzerland

3. Western Pacific Tropical Research Center, University of Guam, Mangilao, GU 96923, USA

Abstract

The natural distribution of Cycas micronesica includes three island groups. Damage to the widespread tree from the armored scale Aulacaspis yasumatsui was initiated with the 2003 invasion of Guam and the 2007 invasion of Rota. This herbivore has threatened the unique gymnosperm species with extinction. The number and identity of co-occurring consumers are dissimilar among disjunct insular subpopulations, and six of these habitats were used to assess tree mortality trends to confirm that A. yasumatsui stands alone as the greatest threat to species persistence. Following the initial infestation outbreak of this pest into each new subpopulation, the standing seedlings and saplings were the first to be culled, the juvenile plants were the next to be culled, and then the adult trees were killed more slowly thereafter. The timing of this plant population behavior did not differ among habitats with five other consumers, three other consumers, one other consumer, or no other consumers. We have shown that A. yasumatsui acting as the sole biotic threat in an isolated subpopulation can generate a decline in survival that is as rapid as when it is acting in conjunction with up to five other consequential consumers. This armored scale is the most acute threat to C. micronesica, and adding other specialist herbivores to the scale herbivory does not alter the speed and extent of initial plant mortality.

Funder

USDA CSREES

United States Forest Service

Publisher

MDPI AG

Subject

Forestry

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3