Analyzing Uncertainty of an Ankle Joint Model with Genetic Algorithm

Author:

Ciszkiewicz AdamORCID

Abstract

Recent studies in biomechanical modeling suggest a paradigm shift, in which the parameters of biomechanical models would no longer treated as fixed values but as random variables with, often unknown, distributions. In turn, novel and efficient numerical methods will be required to handle such complicated modeling problems. The main aim of this study was to introduce and verify genetic algorithm for analyzing uncertainty in biomechanical modeling. The idea of the method was to encode two adversarial models within one decision variable vector. These structures would then be concurrently optimized with the objective being the maximization of the difference between their outputs. The approach, albeit expensive numerically, offered a general formulation of the uncertainty analysis, which did not constrain the search space. The second aim of the study was to apply the proposed procedure to analyze the uncertainty of an ankle joint model with 43 parameters and flexible links. The bounds on geometrical and material parameters of the model were set to 0.50 mm and 5.00% respectively. The results obtained from the analysis were unexpected. The two obtained adversarial structures were almost visually indistinguishable and differed up to 38.52% in their angular displacements.

Funder

Politechnika Krakowska

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3