Surrogate-based worst-case analysis of a knee joint model using Genetic Algorithm

Author:

Ciszkiewicz Adam,Dumas Raphael

Abstract

Verification, validation, and uncertainty quantification is generally recognized as a standard for assessing the credibility of mechanical models. This is especially evident in biomechanics, with intricate models, such as knee joint models, and highly subjective acquisition of parameters. Propagation of uncertainty is numerically expensive but required to evaluate the model reliability. An alternative to this is to analyze the worst-case models obtained within the specific bounds set on the parameters. The main idea of the paper is to search for two models with the greatest different response in terms of displacement-load curve. Real-Coded Genetic Algorithm is employed to effectively explore the high-dimensional space of uncertain parameters of a 2D dynamic knee model, while Radial Basis Function surrogates reduce the computation by orders of magnitude to near real-time, with negligible impact on the quality. It is expected that the studied knee joint model is very sensitive to uncertainty in the geometrical parameters. The obtained worst-case knee models showcase unrealistic behavior with one of them unable to fully extend, and the other largely overextending. Their relative difference in extension is up to 35% under ±1 mm bound set on the geometry. This unrealistic behavior of knee joint model is confirmed by the large standard deviation obtained from a classical sampling-based sensitivity analysis. The results confirm the viability of the method in assessing the reliability of biomechanical models. The proposed approach is general and could be applied to other mechanical systems as well.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3