Advancements in Transparent Conductive Oxides for Photoelectrochemical Applications

Author:

Wen He1,Weng Bo2ORCID,Wang Bing1,Xiao Wenbo3,Liu Xiao1ORCID,Wang Yiming1,Zhang Menglong14ORCID,Huang Haowei5

Affiliation:

1. School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China

2. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

3. Key Laboratory of Nondestructive Test, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China

4. Zhejiang Xinke Semiconductor Co., Ltd., Hangzhou 311421, China

5. Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium

Abstract

Photoelectrochemical cells (PECs) are an important technology for converting solar energy, which has experienced rapid development in recent decades. Transparent conductive oxides (TCOs) are also gaining increasing attention due to their crucial role in PEC reactions. This review comprehensively delves into the significance of TCO materials in PEC devices. Starting from an in-depth analysis of various TCO materials, this review discusses the properties, fabrication techniques, and challenges associated with these TCO materials. Next, we highlight several cost-effective, simple, and environmentally friendly methods, such as element doping, plasma treatment, hot isostatic pressing, and carbon nanotube modification, to enhance the transparency and conductivity of TCO materials. Despite significant progress in the development of TCO materials for PEC applications, we at last point out that the future research should focus on enhancing transparency and conductivity, formulating advanced theories to understand structure–property relationships, and integrating multiple modification strategies to further improve the performance of TCO materials in PEC devices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3