Abstract
Over two decades, block caving mining has developed the application of hydraulic fracturing as a preconditioning method. This study aims to estimate hydraulic fracturing costs in block caving operations and suggests the base case of specified costs based on the U.S. Energy Information Administration (EIA) report. Furthermore, it applies cavability factors to develop the long- and short-term strategies through the fuzzy inference system. In the long-term strategy, we suggest three possible scenarios for reducing the long-term strategy’s uncertainty by considering the association for the advancement of cost engineering (AACE)’s contingency rate. Moreover, each fuzzy membership function of the three possible redeveloped scenarios was analysed through arithmetic operations over independent/dependent fuzzy numbers for comparing each scenario. The outcome of flexible cost estimation suggested deciding on the scale of infrastructure and ore production by facilitating undercut propagation and controlling block height of block caving operation including additional fragmentation processes. The result of this study also illustrated that systematic fuzzy cost engineering could help estimate the initial stage of budgeting. In addition, through solving the uncertainty of fuzzy calculation values, the project schedule identification is presented by recognising the dependence on each scenario’s common characteristic of the cavability parameter and cost contingency rate.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Reference52 articles.
1. Block Caving Geo Mechanics;Brown,2007
2. On some optimisation models in a fuzzy-stochastic environment
3. Hydraulic fracturing as a cave inducement technique at North parkes Mines;Van As,2000
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献